If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+3x-115=0
a = 4; b = 3; c = -115;
Δ = b2-4ac
Δ = 32-4·4·(-115)
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1849}=43$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-43}{2*4}=\frac{-46}{8} =-5+3/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+43}{2*4}=\frac{40}{8} =5 $
| 6n^2=8+22n | | 24,3x+15=45-5,7x | | 3-5x+7=-10 | | t^2-5t=31.25 | | t^2-5t=32 | | 5x=(25+7) | | 5(c-2)=3(c+4) | | 5(c-2)=3(c=4) | | 12=x/2- | | 2(3h-5)=14 | | 12=x÷2-8 | | 27x-9+5x+15=24 | | -4(5x-1)+6x=2(x+8) | | 5=12^x | | 2w-10=7w-20 | | 6-x1=10 | | 12-2(x-5)=0 | | 3y-y-2=0 | | 4x-6=3x+24=3x-15 | | 3b-1=2b+2 | | 3b-1=2b+23 | | 9x+7x+5x=180° | | 0.5(x+2/3)=3(x-1 | | -3x+9=10x+15 | | 3(2x+1)+2(3x+2)=35 | | 18-5=3+4k-9k+6 | | 18=m+4 | | 4-3p+8p-7=-13 | | 4a²-4a-3=0 | | -10=a/10-11 | | 6.5=r/4+6 | | -18.8=s/5-10 |